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EDITORIAL

The incidence of Coronary artery disease (CAD) decreased significantly 
following implementation of  primary and secondary prevention strategies like 
promotion of healthy life style, cessation of smoking, positive changes in nutrition 
and more emphasis on physical activity besides effective medical treatment like 

 1,2platelet inhibitors and Statins in the later part of last century.  Improved 
application of established primary prevention strategies undoubtedly has the 
potential to further reduce the incidence of CAD.

3,4 
However, many individuals with significant risk, either do not take medications or 
are unable to introduce the necessary lifestyle changes that are necessary to 

5–8 substantially reduce risk. Recent substantial progress in genomic medicine, 
guided by great breakthroughs in laboratory technology and computing power, 
provides us with a golden opportunity to understand the genetic basis of CAD. 
This knowledge should be used to improve our ability to identify subjects who are 
at high risk and we should try to develop special protocols for them.

Family studies prove that common presentations of CAD are heritable. Recent 
epidemiological studies involving unrelated individuals provided the first clues 
that non Mendelian common presentations of CAD in middle to late adulthood 

9were heritable.  Studies have documented 2.5- to 4-fold higher rates of CAD 
among individuals with a family history compared with those with no family 
history when adjusting only for age and sex. When traditional risk factors are 
controlled, the excess risk of CAD is reduced to about 1.5- to 2.5 folds. This 
supports that some part of this excess risk is a consequence of familial 
aggregation of traditional risk factors. Familial aggregation studies prove that a 
stronger family history or an earlier age of onset of disease in a family member 

9-11further increases the risk for close relatives.  The twin studies have observed 
higher heritability, similar to the familial aggregation studies, especially when 
disease occurs at a younger age and a reduction in estimates when traditional risk 

12–14factors are taken into account.  

Employing the genome-wide association studies (GWAS) approach, three 
groups in Europe in 2007 independently reported the first region of the genome to 
be linked to CAD. The susceptibility locus is located on the short arm (p) of 
chromosome 9 at band 2.1, and thus is commonly referred to as 9p21. The locus 
has 60 strongly correlated SNPs over 53,000 base pairs and is 100,000 to 
150,000 base pairs upstream of the genes encoding 2 cyclin-dependent kinase 

 Collectively, these strategies are 
able to reduce the incidence of CAD by almost 50% in high-risk populations.
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(CDK) inhibitors and known tumor suppressors, CDKN2B and CDKN2A. The locus overlaps the last section of a long noncoding 
15-17ribonucleic acid and is transcribed antisense to CDKN2B (CDKN2BAS or ANRIL).  The lead variants at 9p21 are common, 

with a minor allele frequency of about 50% in Europeans, resulting in about 75% of individuals of European ancestry carrying at 
least 1 allele that increases risk. The increase in risk for CAD was approximately 25% for 1 copy and about 50% for 2 copies, with 
somewhat higher risks per allele observed among those with early-onset CAD. The risk mediated by 9p21 seemed to be 
completely independent of all known risk factors, proving that other unknown factors contribute substantially to the 

15-17pathogenesis of CAD.

The exact mechanism linking genetic variation at 9p21 to the risk of CAD remains uncertain, although several sets of 
observations at the population level and in the laboratory have helped to point to the possibilities. Firstly, exactly same variants 
have been linked to extra cardiac atherosclerosis like carotid plaque, ischemic stroke, and peripheral arterial disease, 
suggesting that the locus predisposes to atherosclerosis in all vascular beds. Secondly, same variants have been linked to both 

19abdominal aortic and intracranial arterial aneurysms, implying that the cells that are affected are in the vessel wall of the artery.  
Thirdly, evidence suggests that the SNPs in the high-risk region disrupt or create transcription factor binding sites that alter the 
expression levels, or the relative abundance of different transcripts of the noncoding ribonucleic acid, ANRIL, which in turn 
affects the expression levels of CDKN2B and/or 2A. The protein products of these 2 genes, p15INK4a and p16 INK4a, then alter 
the function of macrophages and/or vascular smooth muscle cells, facilitating the formation of atherosclerotic plaque. Fourthly, 
animal model studies suggest that these effects could involve increased proliferation and reduced apoptosis of resident 

19macrophages and/or vascular smooth muscle cells.

Eleven other loci for CAD were identified within a very short interval of the discovery of 9p21 by three groups that included the 
20-24Welcome Trust Case-Control Consortium, Cardiogenics Consortium and Myocardial Infarction Genetics Consortium.  The 

result of these initial  (GWAS) confirmed that common susceptibility variants for CAD carried 
minimal incremental risk hence it would require a very large sample size - in tens of thousands to hundreds of thousands to be 
uncovered. Therefore larger national and international consortia were formed to tackle this challenge like Coronary Artery 
Disease Genome Wide Replication and Meta-analysis (CARDIoGRAM) and the Coronary Artery Disease (C4D) Genetics 
consortia that confirmed selected SNPs are genotyped in an independent cohort or case-control set in 2011. Almost all of the 

25,26previously reported loci and uncovered 17 new loci through meta-analysis.  Through further collaboration between these 2 
consortia, and the testing of a larger fraction of SNPs with a minor allele frequency >1% using advanced imputation algorithms, 
CARDIoGRAM plus C4D reported an additional 15 novel loci in 2013 and 8 loci in 2015, after the examination of >60,000 cases 
and >120,000 control subjects. These studies brought the total loci to 58 in largely European and to a lesser extent in South 

27,28Asian populations.  East Asians represent the next most studied ethnic group. A total of 12 loci were recognized and reached 
genome-wide significance for CAD in studies involving either Han Chinese, Korean and Japanese subjects, with at least 6 of 

30-34 these loci overlapping with loci uncovered in Europeans. Well-powered studies using this array firmly established 
associations between CAD and genetic variants in LPA, the gene encoding lipoprotein(a), and confirmed several early GWAS 

35,36discoveries for CAD.  

Much awaited clinical application for genetic risk variants predisposing to CAD is to be able to improve ability to risk-stratify 
37,38 individuals Large room for improvement exists although current clinical risk prediction scores for CAD perform relatively well 

compared to scores for other chronic diseases. A large pool of individuals with incident events carries either only 1 modifiable 
39-41 risk factor or only borderline risk factor. Improving our ability to better predict a particular set of women with similar risk 

factors will experience an event through the addition of a novel biomarker, such as one's genetic susceptibility to CAD, would be 
expected to improve outcomes through more efficient application of established primary prevention therapies. The most 
practical way to currently integrate genetics into risk prediction models, such as the Framingham Risk Score or the ACC/AHA 

42 pooled cohorts calculator, is through the calculation of a genetic risk score (GRS) for individuals.  A GRS is a single variable 
43that summarizes one's exposure to variants that increase risk for CAD.  A GRS is typically calculated by summing the product of 

the number of high-risk variants inherited by each individual for each susceptibility variant and the log of the odds ratio 
42previously determined in a GWAS for the same variant.  The use of GRS in clinical practice has been slow to materialize for 

several reasons, including the high cost of genotyping, the more modest effects of genetic variants on the risk of CAD than 
originally anticipated, and the challenge of improving a clinical risk score, such as the Framingham or ACC/AHA risk score, that 

38,42,44already performs quite well.  Consequently, it has been difficult to demonstrate substantial improvements to standard 
model performance metrics with the addition of a GRS, even though ample evidence now exists that a GRS of known CAD loci 

42,45-50predicts incident CAD events independent of all other traditional risk factors.  Though family history serves as a substitute 
for genetic risk, yet individual variants, as well as GRS of CAD, have been shown to predict clinical complications of CAD 

49independent of family history.  

genome-wide association studies
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46Recent studies emphasize the potential for a GRS of CAD to improve primary and secondary prevention outcomes.  GRS 
involving 27 variants previously proven to be associated with CAD was constructed after genotyping DNA biobanked at baseline 
from participants in 1 community-based cohort study (the Malmo Diet and Cancer Study), 2 primary prevention trials of statins 
(JUPITER and ASCOT), and 2 secondary prevention trials assessing the efficacy of statin therapy (CARE and PROVE ITTIMI 

4622).  Among the 48,421 individuals and 3,477 events included in this study, investigators showed that the GRS not only 
predicted incident CAD events, but also predicted recurrent CAD events, independent of all traditional risk factors including 

46family history.   The absolute risk reduction estimated a roughly 3-fold decrease in the number needed to treat (NNT) to prevent 
46 1 CAD event in the primary prevention trials. In primary prevention trials number needed to treat (NNT) to prevent 1 such event 

in 10 years was 66 in people at low genetic risk, 42 in those at intermediate genetic risk and 25 in those at high genetic risk in 
JUPITER, and 57, 47, and 20, respectively, in ASCOT. GRS served as a prognostic marker and also as a marker to predict 

51response to single most important primary and secondary therapy already available.  Using GRS, one can target large 
populations at high risk like premenopausal women with high genetic risk and optimal response to statin therapy, for primary 

38prevention. The incremental predictive ability of GRS is expected to improve over time.  

Recent advances have made it possible to perform high-throughput genetic profiling in a cost-efficient manner and allowed 
research groups around the world to share data and collaborate. These collaborations have resulted in identifying over 60 
susceptibility loci which underline the importance of established mechanisms of disease like cholesterol metabolism. These 
genetic studies help us to understand relationship between established or emerging risk factors and CAD and shall improve our 
ability to identify individuals who are at high risk of CAD through addition of genetic risk into clinical risk scores. This has thrown 
newer challenges like identification of remaining susceptibility loci for CAD and exploring clinical utility of genetic data in 
prevention of CAD. This knowledge shall be used to develop newer therapeutic agents. Considering the distribution of effect 
sizes observed to date for both common and rare variants very large sample sizes are needed for additional discoveries. In the 
coming times this need will be fulfilled by mega-biobanks involving at least one-half million participants, including, but not 
limited to UK Biobank, China Kadoorie Biobank, Million Veteran Program and soon-to-be-established National Institutes of 

52-55Health Precision Medicine Initiative cohort.   These new resources and techniques have already provided important 
mechanistic insights for several novel susceptibility loci for CAD, including those regions harboring the genes CDKN2B, SORT1, 

56-63TCF21, ADAMTS7, SMAD3, and other loci.  This knowledge has yet to be applied to therapeutic agents to target these loci. 
The rapid translation for loci such as PCSCK9 offer some optimism that such developments are possible. This is likely to provide 
us with innovative opportunities to further reduce and possibly eliminate CAD in times to come. 

To conclude, we are entering a new exciting era as we can use genetic risk variants for the prevention and management of 
coronary artery disease (CAD). Current knowledge pertaining to 60 susceptibility loci identified for CAD confirms the 
importance of established risk factors and many novel causal pathways. This will surely improve our understanding of genetic 
basis of CAD and hopefully open the door to development of new therapeutic agents in the future. Mendelian randomization 
studies have enhanced our understanding of causal relationship between CAD-related traits. This has fur ther highlighted the 
potential benefits of long-term modifications of risk factors. Genetic risk scores of CAD are important both as prognostic and 
predictive markers. This may also change the approach to delivery of established prevention strategies. 
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